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State of the Art of #
Multi-Material Fabrication
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Multi-Material 3D Printers
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Large Material Library!

Courtesy of Stratasys
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High-Resolution: 600 DPI!

Courtesy of Stratasys



8 

Recent Research Results
•  BSSDRF 2010 [Hašan 2010]
•  Deformation [Bickel 2010]
•  Co-Continuous Polymers [Wang 2011]
•  FGM Prototyping [Oxman 2011]
•  Tissue Constructs [Xu 2012]
•  Tough Composites [Dimas 2013]
•  Actuated Characters [Skouras 2013]
•  Lenticulars [Tompkin 2013]
•  Printed Optics [Willis 2013]
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Current Industry Use
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One Material Per Part

Courtesy of Studio Fathom



11 

Why?
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Why One Material Per Part?
•  Traditional constraints of manufacturing
•  Poor specification methods
•  Lack of scalable software architectures
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Improve Specification Methods
•  Functional specification

!  Spec2Fab
•  Direct specification
�  OpenFab
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Software Architecture Challenges
•  Giga voxels/inch3, Tera voxels/foot3

•  Continuous gradation between materials
•  Reusable material definitions
•  Resolution and printer independence




15 

 #
First Programmable and #

Scalable Fabrication Pipeline


OpenFab
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OpenFab
•  Inspired by rendering pipelines
•  Fixed stages and programmable stages
•  Procedural surface and material definitions
•  Resolution independence
•  Streaming architecture
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Outline
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Outline
•  OpenFab programming model
•  OpenFL and fablets
•  Architecture
•  Results
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The OpenFab#
Programming Model
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The OpenFab Programming Model
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input tessellate surface stage voxelize volume stage output dither 

textures materials 

Input
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input tessellate surface stage voxelize volume stage output dither 

textures materials 

Fixed-Function Stages
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Programmable Stages!

input tessellate surface stage voxelize volume stage output dither 

textures materials 
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input tessellate surface stage voxelize volume stage output dither 

textures materials 

External Resources
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input tessellate surface stage voxelize volume stage output dither 

textures materials 

Output
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input tessellate surface stage voxelize volume stage output dither 
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input tessellate surface stage voxelize volume stage output dither 
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input tessellate surface stage voxelize volume stage output dither 

•  Shapes (boundary representation)
•  Shape priorities
•  Fablets
•  Resources

•  Textures
•  Materials



29 

input tessellate surface stage voxelize volume stage output dither 
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input tessellate surface stage voxelize volume stage output dither 
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input tessellate surface stage voxelize volume stage output dither 
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input tessellate surface stage voxelize volume stage output dither 
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input tessellate volume stage output dither surface stage voxelize 
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input tessellate volume stage output dither 

Teddy Bear P = 1
Block P = 2

surface stage voxelize 
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input tessellate surface stage voxelize volume stage output dither 

1 Voxel
50% A
25% B
25% C
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dither input tessellate surface stage voxelize volume stage output 

1 Voxel
50% A
25% B
25% C



37 

dither input tessellate surface stage voxelize volume stage output 
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OpenFL and Fablets
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Programmable Stages!

input tessellate surface stage voxelize volume stage output dither 

textures 

fablets 

materials 
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OpenFL: Domain-Specific Language
•  C/C++ like language
•  Built-in vector, matrix, texture, material types
•  Modest OO features
•  Pointwise (kernel) programming model
•  Standard library of math functions
•  Global queries
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Volume Fablet: Global Queries
foreah 
object 

tessellate object 

surface fablet stage 

voxelize object 

done 

fablet MyFablet {!
  @uniform Material red, blue, yellow;!
!
  @Surface(…) { !
      return double3(0, 0, 0); // no displacement!
  }!
!
  @Volume(@varying double3 voxelCenter) {!
      MaterialComposition mc;!
      const double layerThickness = 1;!
      double dist = distance();!
      if (dist <= layerThickness) {!
          mc.Set(red, 1);!
      } else if (dist <= layerThickness * 2) {!
          mc.Set(blue, 1);!
      } else {!
          mc.Set(yellow, 1);!
      }!
      return mc;!
  }!
}!
!
!
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Why DSL?
•  Full control over programming model
•  Analysis opportunities
•  Optimizations
•  Retargeting
•  Sand-boxing
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The OpenFab#
Architecture
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Scalable Architecture
•  Fast start-up
•  Streaming
•  Fixed memory

Z
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•  Build!coarse!octree!
•  On!query,!build!second4level!octree!
•  Evaluate!surface!stage!of!fablet!
•  Cache!result!in!the!LRU!cache!
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Results
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Material Decoupling
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Material Decoupling!
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Material Decoupling!
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Lithopane!
Back FrontBacklit
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Procedural Surfaces!
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Procedural Volumes!
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Shape Priority!
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Conclusion
•  First programmable pipeline for fabrication
•  New programming model 
•  Domain-specific language
•  Scalable architecture
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Software Release!

http://openfab.mit.edu/


Open sourcing the OpenFab API (BSD license)
Binary release of the fabricator and compiler
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