
1

2

OpenFab
 A Programmable Pipeline for Multi-Material Fabrication

Kiril Vidimče
Szu-Po Wang
Jonathan Ragan-Kelley
Wojciech Matusik
Computational Fabrication Group
Massachussetts Institute of Technology

3

State of the Art of #
Multi-Material Fabrication

4

Multi-Material 3D Printers

5

Large Build Volume!

0.
5

m

1 m

6

Large Material Library!

Courtesy of Stratasys

7

High-Resolution: 600 DPI!

Courtesy of Stratasys

8

Recent Research Results
•  BSSDRF 2010 [Hašan 2010]
•  Deformation [Bickel 2010]
•  Co-Continuous Polymers [Wang 2011]
•  FGM Prototyping [Oxman 2011]
•  Tissue Constructs [Xu 2012]
•  Tough Composites [Dimas 2013]
•  Actuated Characters [Skouras 2013]
•  Lenticulars [Tompkin 2013]
•  Printed Optics [Willis 2013]

9

Current Industry Use

10

One Material Per Part

Courtesy of Studio Fathom

11

Why?

12

Why One Material Per Part?
•  Traditional constraints of manufacturing
•  Poor specification methods
•  Lack of scalable software architectures

13

Improve Specification Methods
•  Functional specification

!  Spec2Fab
•  Direct specification
�  OpenFab

14

Software Architecture Challenges
•  Giga voxels/inch3, Tera voxels/foot3

•  Continuous gradation between materials
•  Reusable material definitions
•  Resolution and printer independence

15

 #
First Programmable and #

Scalable Fabrication Pipeline

OpenFab

16

OpenFab
•  Inspired by rendering pipelines
•  Fixed stages and programmable stages
•  Procedural surface and material definitions
•  Resolution independence
•  Streaming architecture

17

Outline

18

Outline
•  OpenFab programming model
•  OpenFL and fablets
•  Architecture
•  Results

19

The OpenFab#
Programming Model

20

input tessellate surface stage voxelize volume stage output dither

textures materials

The OpenFab Programming Model

21

input tessellate surface stage voxelize volume stage output dither

textures materials

Input

22

input tessellate surface stage voxelize volume stage output dither

textures materials

Fixed-Function Stages

23

Programmable Stages!

input tessellate surface stage voxelize volume stage output dither

textures materials

24

input tessellate surface stage voxelize volume stage output dither

textures materials

External Resources

25

input tessellate surface stage voxelize volume stage output dither

textures materials

Output

26

input tessellate surface stage voxelize volume stage output dither

27

input tessellate surface stage voxelize volume stage output dither

28

input tessellate surface stage voxelize volume stage output dither

•  Shapes (boundary representation)
•  Shape priorities
•  Fablets
•  Resources

•  Textures
•  Materials

29

input tessellate surface stage voxelize volume stage output dither

30

input tessellate surface stage voxelize volume stage output dither

31

input tessellate surface stage voxelize volume stage output dither

32

input tessellate surface stage voxelize volume stage output dither

33

input tessellate volume stage output dither surface stage voxelize

34

input tessellate volume stage output dither

Teddy Bear P = 1
Block P = 2

surface stage voxelize

35

input tessellate surface stage voxelize volume stage output dither

1 Voxel
50% A
25% B
25% C

36

dither input tessellate surface stage voxelize volume stage output

1 Voxel
50% A
25% B
25% C

37

dither input tessellate surface stage voxelize volume stage output

B C
A

4 Voxels

A

38

OpenFL and Fablets

39

Programmable Stages!

input tessellate surface stage voxelize volume stage output dither

textures

fablets

materials

40

OpenFL: Domain-Specific Language
•  C/C++ like language
•  Built-in vector, matrix, texture, material types
•  Modest OO features
•  Pointwise (kernel) programming model
•  Standard library of math functions
•  Global queries

41

Volume Fablet: Global Queries
foreah
object

tessellate object

surface fablet stage

voxelize object

done

fablet MyFablet {!
 @uniform Material red, blue, yellow;!
!
 @Surface(…) { !
 return double3(0, 0, 0); // no displacement!
 }!
!
 @Volume(@varying double3 voxelCenter) {!
 MaterialComposition mc;!
 const double layerThickness = 1;!
 double dist = distance();!
 if (dist <= layerThickness) {!
 mc.Set(red, 1);!
 } else if (dist <= layerThickness * 2) {!
 mc.Set(blue, 1);!
 } else {!
 mc.Set(yellow, 1);!
 }!
 return mc;!
 }!
}!
!
!

42

Why DSL?
•  Full control over programming model
•  Analysis opportunities
•  Optimizations
•  Retargeting
•  Sand-boxing

43

The OpenFab#
Architecture

44

Scalable Architecture
•  Fast start-up
•  Streaming
•  Fixed memory

Z

45

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

46

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

[Clarberg 2010]

47

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

48

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreah
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

•  Build!coarse!octree!
•  On!query,!build!second4level!octree!
•  Evaluate!surface!stage!of!fablet!
•  Cache!result!in!the!LRU!cache!

49

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

50

infer bounds

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreah
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

precalculate
support structures

51

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

52

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

53

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

54

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

55

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

56

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

57

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

58

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

59

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

60

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

61

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

62

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

63

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

64

infer bounds

precalculate
support structures

z sort objects

coarse
acceleration
structures

priority sort

find objects in
slab

forech
slab

foreach
object

tessellate object

surface fablet stage

voxelize object

volume fablet stage

done
quit

dither

output

done

65

Results

66

Material Decoupling

67

Material Decoupling!

68

Material Decoupling!

69

Lithopane!
Back FrontBacklit

70

Procedural Surfaces!

71

Procedural Volumes!

72

Shape Priority!

73

Conclusion
•  First programmable pipeline for fabrication
•  New programming model
•  Domain-specific language
•  Scalable architecture

74

Software Release!

http://openfab.mit.edu/

Open sourcing the OpenFab API (BSD license)
Binary release of the fabricator and compiler

75

Thanks!

•  Mark Leone
•  Jaakko Lehtinen
•  Frédo Durand
•  Pitchaya Sitthi-Amorn
•  Ye Wang
•  Desai Chen

•  Moira Forberg
•  Justin Lan
•  David Levin
•  James Tompkin
•  Thiago Pereira
•  Shinjiro Sueda

Funding: NSF, NSF GRP, DARPA, and MIT UROP

76

Kiril Vidimče

